SortBinaryInsertion
- class corsort.SortBinaryInsertion(compute_history=False)[source]
Binary insertion sort.
Examples
>>> binary_insertion_sort = SortBinaryInsertion(compute_history=True) >>> my_xs = np.array([4, 1, 7, 6, 0, 8, 2, 3, 5]) >>> binary_insertion_sort(my_xs).n_comparisons_ 19 >>> binary_insertion_sort.history_comparisons_ [(1, 0), (1, 2), (0, 2), (0, 3), (3, 2), (4, 0), (4, 1), (0, 5), (3, 5), (2, 5), (6, 0), (4, 6), (1, 6), (7, 0), (1, 7), (6, 7), (7, 8), (8, 3), (0, 8)] >>> binary_insertion_sort.history_comparisons_values_ [(1, 4), (1, 7), (4, 7), (4, 6), (6, 7), (0, 4), (0, 1), (4, 8), (6, 8), (7, 8), (2, 4), (0, 2), (1, 2), (3, 4), (1, 3), (2, 3), (3, 5), (5, 6), (4, 5)] >>> binary_insertion_sort.history_distances_ [30, 30, 30, 30, 30, 30, 30, 22, 22, 22, 22, 22, 22, 14, 14, 14, 6, 6, 6, 0] >>> binary_insertion_sort.sorted_list_ array([0, 1, 2, 3, 4, 5, 6, 7, 8])
>>> np.random.seed(42) >>> binary_insertion_sort = SortBinaryInsertion(compute_history=False) >>> binary_insertion_sort(np.random.permutation(100)).n_comparisons_ 537
- distance_to_sorted_array()[source]
Distance to sorted array.
- Returns:
Distance between the current estimation and the sorted array.
- Return type:
- property history_comparisons_values_
History of the pairwise comparisons, in terms of compared values. Tuple (x, y) means that items of values x and y were compared, and that x < y.
- test_i_lt_j(i, j)
Test whether perm[i] < perm[j].
- Parameters:
- Returns:
True if item of index i is lower than item of index j.
- Return type:
Notes
The history of distance is computed just before the comparison. Hence it should be computed a last time at the end of the algorithm.