scorers
- corsort.scorers.scorer_delta(leq)[source]
Scorer delta.
- Parameters:
leq (
ndarray
.) – Matrix of size (n_, n_). Coefficient (i, j) is +1 if we know that item i <= item j, -1 if we know that item i > item j, 0 if we do not know the comparison between them.- Returns:
Score for each item.
- Return type:
Examples
Up to 1, this is just the sum of the column of the leq matrix:
>>> my_leq = np.array([ ... [ 1, 1, 1, 1], ... [-1, 1, -1, -1], ... [-1, 1, 1, 0], ... [-1, 1, 0, 1], ... ]) >>> scorer_delta(my_leq) array([-3, 3, 0, 0])
We can deduce the Borda score from it:
>>> n = my_leq.shape[0] >>> (scorer_delta(my_leq) + n - 1) / 2 array([0. , 3. , 1.5, 1.5])
- corsort.scorers.scorer_rho(leq)[source]
Scorer rho.
- Parameters:
leq (
ndarray
.) – Matrix of size (n_, n_). Coefficient (i, j) is +1 if we know that item i <= item j, -1 if we know that item i > item j, 0 if we do not know the comparison between them.- Returns:
Score for each item.
- Return type:
Examples
>>> my_leq = np.array([ ... [ 1, 1, 1, 1], ... [-1, 1, -1, -1], ... [-1, 1, 1, 0], ... [-1, 1, 0, 1], ... ]) >>> scorer_rho(my_leq) array([0.25, 4. , 1. , 1. ])